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and

Samuel M. Howard*
Cornell University, Ithaca, New York 14853

The dynamics of planar frames and trusses is analyzed in terms of the propagation of axial (longitudinal)
and flexural (transverse) stress waves being structural members. The waves are multiscattered at the joints, and
scattering coefficients representing the reflection and transmission of both types of waves at each joint are derived
from the dynamics and compatibility conditions of the joint. The complex multireflected waves within the structure
are evaluated in the frequency domain by a newly developed reverberation matrix, which is formulated from
scattering coefficients and propagating phase factors. Transient waves are then analyzed by Fourier synthesis
and evaluated by a fast Fourier transform algorithm. Transient responses for the axial and bending strains in
all structural members are calculated over a long duration for a model truss with rigid joints. Comparison to
experimental data of the model truss under astep loading shows good agreement for the early as well as considerably

long time responses.

I. Introduction

HE dynamic responses of framed structures, such as a truss
or a rigid frame, have been traditionally analyzed by two ap-
proaches. One is to treat the structure as a multiconnected distribu-
tive system or continuous bodies of beams and columns, and the
other is to discretize each and every structural member into finite

numbers of elements (FEM).!? “

For the steady-state response of a distributive system, the stiffness
matrix that relates the displacements of the joints to the forces in
all connecting members is first derived. Because the forces and dis-
placements at one end of a member are related to those at the other
by the transfer matrix, the dynamic stiffness matrix (or compliance
matrix) for all joints is then assembled for the entire structure.®*
Transient responses of the structure can then be calculated, in prin-
ciple, by superposing the steady-state responses for all frequencies
with the Fourier integral.’

For the discretized system the stiffness matrix for each element is
estimated from the assumed shape functions for displacement and
the mass. The mass matrix is estimated by averaging the kinetic
energy with the assumed shape functions. A system of dynamic
equations is then derived for the kinetic variables at all nodes of the
discretized system.5

Recently, Nagem and Williams’ proposed a new matrix formu-
lation for planar structures. In their method the transfer matrices
of all members are connected with joint coupling matrices to form
the system matrix that characterized the steady-state response of the
entire structure. Based on the system matrix, they have calculated
the natural frequencies of a sample structure, and their results are
more accurate than those determined from the dynamic compliance
matrix or the finite element method.
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In this paper we present an alternative matrix formulation for
determining the dynamic response of distributive systems. This
method, which was named as the method of reverberation matrix
in a previous publication,? is particularly suitable for evaluating the
transient response of a framed structure. In Ref. 8 the method was
developed to analyze axial waves in a truss with rigid joints, and
the results were compared to those developed by the ray-tracing
method, which was presented eatlier by Boley and Chao,’ and to
a set of carefully conducted experimental records.'® Although the
theoretical results agree very well with the experimental data for the
early time response, they differ shortly after the initial period. As
mentioned in Ref. 8, the divergence could be caused by neglecting
the flexural waves at each joint. The reverberation matrix is thus
modified in this paper by adding the modes of flexural waves in
structural members.

In the modification the theory is improved by considering trans-
verse displacement as well as axial displacement for all members.
The propagation and scattering of three types of waves, the axial
wave and the two modes of flexural waves based on the Timoshenko
beam theory, are included in the newly formed reverberation ma-
trix, from which the transient response of a structure is evaluated by
applying the fast Fourier transform (FFT) algorithm.

We formulate in the next two sections scattering and reverbera-
tion matrices for the steady-state responses. In Sec. IV, we discuss
the error that could be produced by applying the FFT algorithm.
Section V presents the results for transient waves in three mem-
bers of the model truss in Ref. 8 and the comparisons of the results
obtained from the two theories as well as those from experiments.
The accuracy of the present matrix formulation and calculation is
ascertained by checking the balance of forces and moments for a
considerably long time period. The paper ends with a brief conclu-
sion in Sec. VIL

II. Motion of Structural Members and Joints

A frame structure is an assemblage of members (rods or beams)
connected at joints with pins or rigid connectors. We identify joints
by letters (J, K, L, ...) or numbers (1, 2, ...) and members by two
letters or two numbers at both end joints ( 1J, /K, ...;1-2,2-3,
....). For the truss illustrated in Fig. 1, there are 10 joints and 17
members. The joints, including those at supports, are identified by
numbers 1-10 or J, K, L, ..., as shown. In this paper we indicate
the total number by #, total number of members by m, and number of
members meeting at the same joint J bym’ (J =1,2,...). Thetotal
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Fig.1 Geometry of a planar model truss: a) labeling of 10 joints and
17 structural members and b) forces and moments at the joints in local
and global coordinates.

number of structural members m is related to the sum of numbers
m’ (J=1,2,...,n)and

n
Zm" =2m
=

All joints on a plane are referred to common Cartesian coordi-
nates (X, Y, Z = 0), which are called the global coordinates of
the structure. For each member J K, we introduce two right-hand
systems of coordinates, (x, y)’X with origin at J and (x, y)X/ at

K ; the directions of x’¥ and y’¥ are opposite to those of xX/ and

y%7, respectively. We call (x, y)’¥ and so on the local coordinate
systems.

The components of any physical quantities in the structure may
be expressed either in global coordinates or in local coordinates.
Denote the two components of the vector v in local coordinates by
v; (i =x, y) and those in global coordinates by the transformation
matrix T;x:

u= Tixvg e

For the member JK shown in Fig. 1, T,x = cos8, T,y = sin@,
T,x =—sin6, and Tyy = —cos 6.

In terms of the local coordinates, there are two components for
the displacement vector in each structural member, the axial dis-
placement u(x, r) along the x axis and the transverse displacement
v(x, t) in the direction of the y axis: the latter is decomposed further
into two parts, v;(x, t) due to shear and v,(x, #) due to bending. In
addition, there is the rotation of the cross section about the z axis,
¢ = dv,/dx. Corresponding to the three displacement components
(u, v, ¢), there are two resultant forces and one moment: the axial
force F(x,t), shear force V(x, t), and bending moment M (x, t),
all acting through the centroid of each cross section.

The sign conventions for the physical quantities are defined as
follows: u, vy, and v, are positive if they point into the positive
direction of the x or y axis; F, V, and M are positive if they acton a
plane with positive (or negative) outer normal and point or relate to a
positive (or negative) axis. Because each cross section of a member
JK is viewed from two sides, one in the direction of x’X and the
other in the direction of x%7 (IX — x'X), we have

» (uJK,VJK,¢{K)=(—FKJ,—VKJ,¢KJ) (2)
(FJK'VJK,MJK)=(_FKJ’_VKJ,_MK¥J) (3)

A. Axial and Flexural Waves in Structural Members
We assume that the cross-sectional area and material properties
for each structural member are constant throughout the length be-

tween two joints. The area A, section moment of area /,'mass den-
sity p, Young’s modulus, and shear modulus G, however, may be
different from member to member.

For each member (superscript omitted) the axial displacement
u(x, t) satisfies the wave equation, and the axial force F(x, r) equals
EAdu/ox. .

Denote the Fourier transform of a physical variable with respect
to ¢ by an overhead caret; for example,

alx, w) = foo ulx, ) e dr (4a)

o0

The inverse transform of &(x, ¢) is given by

1 [, :
u(x,r) = —/ u(x,t) e dr (4b)
2 J
The Fourier-transformed wave equation is
& w?
~— 4+ —id=0 (5a)
dx2 ¢

where ¢ = E/p. The Fourier-transformed axial force is thus given
by

N di.
F= EAEx’i (5b)
The solutions for & (x, w) and F (x, ) are
a(x, w) = ay(@) e + dy () e~ 1% (6a)

F(x,w) = EAik[aie** — dje™7] (6b)

where k; =w/c; and a;(w) and d,(w) are the unspecified ampli-
tudes. With reference to the joint J at x*X =0 and the time vector
exp(iwt), we call a; the arriving wave amplitude and d, the depart-
ing wave amplitude.

The flexural wave in each member is governed by Timoshenko’s

. theory of beams.!! We decompose the transverse displacement into

vy, and v, and express the deflection of the centerline by v and the
rotation of the cross section by ¢, v = v, + vy, ¢ = dv,/3x. The
Fourier-transformed equations of motion 3 (x, ) and 3 (x, w) are

a5, di; ,dB,
EIF +ICAGE='—,DICU -d—x (7a)
d*, n oA
,cAGm = —pAw?(Dy + Ty) (7b)

where « is the shear coefficient of the member, which is assumed
to be w2/ 12 in this paper. The transformed angle of rotation ¢, any
moment M, and shear force V are given, respectively, by

$(x, w) = %, (x, w) = KAG%xv—s
8
N ‘ dd
M(x, w) = El—d-x—i"-

The solutions of Timoshenko’s beam equation (8) are

By (x, @) = ay() €** + dy (w) e5* + a3(w) €% + d3(w) e~**
o _ ©a)
D, (x, w) = arax(w) e'kex + a2dy (w) e~ikax

+ 0303 (w) €% + aydy (w) e7HF (9b)
where a;(w), a3 (w), d2 (w), and d3 (w) are unspecified amplitudes of

arriving waves and departing waves, respectively. The wave mem-
bers k3, k3 are related to w by

2
ka3(@) = 1+T):!:\/(1+17)2—4[17—(Rc;)z]/ﬁcl (10)
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where = E/KG and ¢; = J/(G/p). Corresponding to each k, the
ratio of v, and v; is
wZ _ clk2
ay3(w) = Rz———zz 23
Kkc?

The speeds of the flexural waves are dispersive; the wave speeds are

€23 = w/kz 3. One of the two waves may be nonpropagating if k3 -

is imaginary. The solutions for ¢, M, V are calculated from ¥, and
9, according to Eq. (8).

B. Equations of Motion and Compatibility Conditions at a Free
or Supported Joint
We denote external forces and moments applied at joint J by
fil, fl,and ! (J=1,2,...,n), respectively. The displacement
field of joint J is composed of U I (2), V7 (¢) in the direction of the
X axis and Y axis, respectively, and a rotation @7 (¢) about the Z
axis. Under the action-of external forces, the motion of the joint
J is constrained by the internal forces F/X, V/X, and the internal
bending moment M’* (k=1,2, ..., m’) in all members.
Applying Newton’s law to a moving joint with a concentrated
mass M, we obtain three equations of motion, which in the Fourier-
transformed domain take the forms

md
Y IFE©, 0)cos8'K — VIKQ, w)sin6’F 1+ ff = —* M0
=t (11a)

mJ
Y LF7%(0, w)sing’X — VX 0, @) cos 67F1+ f = oM’V
=t | (11b)

J

3

MK, 0)+ i = —a*M 2D’ (11c)

x
I
—

where y is the radius of gyration of joint J about the Z axis. The

transformed forces and moments in members acting at J can be
expressed in terms of the arriving and departing wave amplitudes

at each member, according to Eqgs. (6), (8), (9a), and (9b) for x =0.
Thej number of unknowns by this substitution is then increased to
6m”.

The displacements and angular rotation at the end of each mem-
ber should be compatible with those of the connecting joint. If all
members are rigidly connected at the joint, they must satisfy the fol-

lowing compatibility equations fork=1,2,..., m? at each joint:
7% (0, @) cos 8% — 374 (0, ) sin6”* = U7 (w) (12a)
470, w) sin 87% — 7%(0, w) cos 67 = V' (w) (12b)
¢70, w) = ¥’ () (12¢)

If all members are pin-connected at the joint, we replace Eq. (12¢)
by the conditions of free rotation or the conditions of vanishing
moment:

M0, w) =0 k=1,2,...,m’) (12d)

In either case the conditions of compatibility for m’ members at
each joint thus supply 3m”’ additional equations.

The two sets of Egs. (11) and (12) form a system of
3(m’ + 1) equations containing 6m’ unknown amplitudes a;* and
d,-'”‘ (i=1,2,3) and a total of six components for the force and
displacement at a joint.

(Of the six components for the state vector of force at a joint
(f{, f{, &'} and that of displacement (U, V7, ®'} in Egs. (11)
and (12), only three of them are unknown quantities, depending on
the support conditions at each joint as described in the following:

1) Free joint with external force: The f{, fy, and fi’ are pre-
scribed, whereas U7, V7, and &7 are unknowns. Furthermore, if all
members are pin-connected at the joint, M’ in Eq. (11c) vanishes.

2) A joint welded to a moving support: The U”, V7, and & are
prescribed, whereas £, f;,and i’ are unknowns.

3) A joint hinged to a moving support: The U7, V7, and &’ are
prescribed, whereas £y, f;, and ®” are unknowns.

4) A joint hinged to a sliding support (free sliding along X axis):
The fJ, V', and i’ are prescribed, whereas U, fy, and &7 are
unknowns,

Therefore, we have established a system of 3(m’ 4 1) equations
for a total of 6m” 4 3 unknowns in Egs. (11) and (12).

IIl. Scattering and Reverberation Matrix
for the Structure

In the preceding set of Egs. (11) and (12), we can solve for 3m”’
unknown amplitudes d’¥ by treating /¥ and the forces or dis-
placements at the joint as given quantities, thereby establishing the
local scattering matrix at each and every joint. The local scattering
matrices are then stacked up to form the global scattering matrix
for the entire structure, which relates the departing wave vector d to
the arriving wave vector a in matrix form. Another set of equations
relating d to a is obtained through the phase relations between the
arriving and departing waves. All of the unknown coefficients @ and
d are thus determined from the external forces in terms of the re-
verberation matrix, which is the product of scattering matrix, phase
matrix, and permutation matrix. Details of the derivation are given
in the next two subsections.

A. - Scattering Matrix

To derive the local scattering matrix as well as the source vector
from Egs. (11) and (12), we can consider the motion of a free joint
J with neighboring joints K, L, M, N, as shown in Fig. 1b. The
departing amplitudes d,.J" (g=K,L,M,N;i=1,2,3) are then
solved in terms of a,-’ ? and the external forces. The results are ex-
pressed as

N 3
d=Y Y srarestt A
p=Kj=

where S,f’jj" are scattering coefficients for waves from joint p through
J to the joint ¢ with mode conversion j to i. The source vectors

’ s-,-J 7 represent the departing waves in member Jgq generated by the

force f7, and they could be determined directly by solving Egs. (11)
and (12) with a/? = 0.
Equation (13a) may be expressed in matrix form:

N
4 =" 57a’? +5' (g=K,L,M,N) (13b)
p=K

For convenience, we call the column matrix a’? the arriving wave
vector in member Jp and d” the departing wave vector in member
Jp, despite the fact that neither one of them is a true vector in three-
dimensional space.

The four column matrices of d’9 may be stacked in a single-
column matrix as follows:

d.IK sKJK SKJL SK.IM SKJN a.IK S.IK
d.lL _ SLJK SLJL SLJM sLJN aJL + s.lL
d.lM SMJK sMJL SMJM SMJN a.IM sJM
d"N SN.IK SNJL SNJM SNJN aJN sJN
14

where each vector d’X, etc., is composed of three components
(d{%,df¥,dj¥), etc., and S¥/¥, §¥/L, and so on are 3 x 3 sub-
matrices.

The matrix equation (14) is further simplified in notation as

d=5'a’ +5’ (15)

where §¢ (3m” x 3m’) is called the local scattering matrix at joint
J, and s7 (3m’ x 1) is called the local source vector at that joint.
The local scattering matrix is the solution of Egs. (11) and (12) that
relates the local departing wave vector d” to the local arriving wave
vector a’ at the joint J. It might be different from joint to joint,
depending on the neighboring members and the support conditions
in the preceding sections.

For example, if the hinged support is fixed, Eqs. (13) are then
determined from the condition U7, V7, and pu’ =0. The reactive
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forces f; and f; and rotation &7 at the hinged support can then
be calculated from Eqs. (11) and (12). On the other hand, if the
hinged joint is supported by a roller free to slide in the X direction,
then the vertical reactive forces £y, displacement U7, and rotation
&’ are treated as unknowns; the scattering matrix is then solved by
eliminating these variables from the system of Eqs. (11) and (12)
with the condition fy =0, V/ =0, and u’ =0.

Assembling all departing wave vectors d” for all joints into a
global vector 4 and all the arriving wave vectors for all joints into
a, we obtain a global equation for the entire structure:

d(w) = S(w)a(w) + s(w) (16)
or
d! st o .. 0 a! s!
a2 0 2 ... 0|4 52
= +
d" o o0 ... § a’ s"

S is called the global scattering matrix, and s is called the global
source vector. The size of the column matrix d, a, or s is (2 x 3m)
because each member appears twice in the formulation of the global
scatting matrix.

In the case of rigid frame or a structure with pinned joints,
Eq. (16) contains two sets of unknowns, the departing wave vector
d and the arriving wave vector a for all structure members. Another
matrix equation that relates d and a is needed to determine either
field vector in terms of the source vector s.

B. Reverberation Matrix
Note that in amember J K the arriving wave vectora’* toend J is
also the departing wave vectordX” from the end K . The components
of these two vectors, however, may be different in phase and sign:
IK _ _e—ikjldJJ_K

a:

/ (=123 (173)

Introducing the (3 x 3) phase matrix P’¥ to account for this dif-
ference, we establish another set of equations for each member as
follows:

alK = PJKdKJ (17b)
where
_e—ikll 0 0
PKEn=| 0 —e™ 0
0 0 —emikal

Next a’X is assembled into @/ and then into the global vector & in
Eq. (16). The %/ vectors are similarly assembled. We designate the
global vector for the assemblage of dX/ by d because the sequence
of components of d is different from that of d, despite the fact that
both contain the same departing field elements:

a=Pd 18)

An element d'¥ in the column matrix 4 appears also in the column
matrix d but in a different position. The two identical elements, one
in d and the other in d, are related by the permutation matrix U as
follows:

d=Ud 19)

where U is a 6m x 6m square matrix, of which each row and column
consists of a single element of unity and the rest of the elements
are zero. The precise form of U depends on the scheme by which
neighboring joints are numbered and the sequence of assembling the
d’ and d. For example, if d%° and d;? occupy ith and pth elements,
respectively, of the column matrix 4, then the elements U;, and U,
equal one, and the remaining elements in the ith row and pth column
are zero.

From Egs. (18) and (19) the second relationship between arriving
wave vector @ and departing wave vector d can be found as

a(w) = Pkl)Ud(w) (20)

This equation that relates @ and d by the product of PU supplements
Eq. (16) for solving @ and d in terms of 5.
Substituting Eq. (20) into Eq. (16), we find

d=SPUd +s [73))
which reduces to
dw) =[I - R, 0)] 's(w) 22)

where R(kl, w) =S(w)P(kDU is called a reverberation matrix for
the structure. Once it is determined, then the departing wave vector
d is obtained from Eq. (23), by first calculating the source vector
s and then the inverse matrix of [I — R]. Thereupon from Eq. (20),
we may calculate the arriving vector & for the entire structure.

IV. Steady-State Response and Transient Response
of the Structure

A. Steady-State Responses

From Egs. (6), (8), (92), and (9b), we can calculate any physical
quantities (displacement, force, moment, strain, etc.) in terms of
the arriving vectors @ and departing vectors d as discussed in the
preceding section. Because we will compare the result of strains
with experimental data, we calculate the extensional strain along
the x axis due to the axial displacement by €, =du/3x and due to
lending by €, = c8%v; /3x%(= €, + €43), Where c is the half-depth of
the beam. Introducing two propagation matrices A¢(x) and D¢ (x),
we express the three parts of the extensional strain (,, €,2, €;3) in
the form of a column matrix:

&% (x, w) = AX (kx)a’ ¥ (@) + DX (kx)d’ ¥ () (23)

" where A’¥ and D!¥ are given by

, ikiehx 0 0
Al¥@n)=| 0 —cke* 0
0 0  —cker
—ikiehr 0 0
DX (kx) = 0 —ckZet* 0
0 0 —ckle tha®

Following the steps for stacking a and d and using Egs. (20) and
(22), we obtain the global strain matrix as

e, w) = [A(kx)P(kD) U + D (kx))I — Rk, )] 's(w) (24)

Equation (24) is also the steady-state response in strains of
the structure when the sources all have the common time factor
exp(iwt). The oscillating strain € becomes infinitely large if the ma-
trix I — R is singular at certain frequencies or when the determinant
of I — R vanishes:

detll -R(kl, w)] =0 25)

1

The roots of this frequency equation w=wy (k=1,2, ..., 00) are
the natural frequencies of the structure. This frequency equation is
similar to that derived by Nagem and Williams,” based on the method
of transfer matrix for these steady vectors (u, v, vy, F, V, M) and
standing-wave components in each member. In this paper we re-
placed the steady vector with the six components by the arriving
wave vector a(ay, a2, a3) and departing wave vector d(d;, d;, d3)
for traveling waves in each member. The evaluation of the Fourier-
transformed extensional strains for the entire structure is now
complete.



598 PAO, KEH, AND HOWARD

B. Transient Responses

For the transient response of the structures, the time-dependent
strain €(x, t) is determined from the inverse transform of € (x, w),
according to Eq. (4b):

€lx,t) = 51; f [A.PU + DI — R s dw (26)

This integral has an infinite number of poles along the real axis of the
complex w plane, w = wy, as determined by Eq. (25). Calculation
of the roots for the natural frequency equation can be very difficult,
as discussed in Ref. 7.

Following the methods of generalized ray, which sorts the re-
verberated waves in layer media into rays of waves,!> we expand
(I — R]™! into the Neumann series

IU—RI"'=I+R+R*+.---R"+---
The integral is then reduced to

1 [ ;
€(x, 1) = I f [APU+DII+R+---+R" +--Js¢ dw
- @
The poles at w = w, are thus removed from the integrand.

Note that the source vector §(w) in either Eq. (26) or Eq. (27)
contains the factor f(w), which is the Fourier transform of the time
function f(¢) for an external force. The f(w) might introduce addi-
tional poles in the integral. In the ensuing numerical examples, we
assume a single force with a unit step-time function H(z) applied
at joint 6:

1 t>0
fO=H@) = [0 } (28a)

t<0

The Fourier transform of f(¢)is f (w) =1/(iw), which is singular
at w = 0. This pole, however, is eliminated by the factors &, k,, or
k3 and the propagation matrices A, and D,.

Once the step response of the structure generated by a source with
the step-time function is known, the transient response of the struc-

ture due to the arbitrary time function can be calculated from the -

Duhamel integral. Furthermore, the source with the step-time func-
tion generates waves in all members with a clearly defined wave
front. As the time ¢ approaches infinity, the time function for the
source approaches unity, and the step response for the structure
should approach the statical strain of the structure under a con-
stant loading. This furnished a check on the calculations of dynamic
response. '

To determine the transient response, we must complete the inverse
Fourier transform represented by either Eq. (26) or Eq. (27). As men-
tioned earlier, the integrand of Eq. (26) contains an infinite number
ofpolesatw=w, (k=1,2, ..., 00), where w; are real numbers for
an elastic structure. In principle, the integral in Eq. (26) could be
evaluated by summing the residues of the integrand at all poles, and
so this is equivalent to evaluate accurately the contributions of all
normal modes. The actual calculation, however, can be very difficult
because numerical evaluation of the residues is very complicated,
and only a finite number of poles can be located precisely.” To yield
an accurate early time response, we need to include a large number
of normal modes at high frequencies.

On the other hand, the integrand of Eq. (27) contains no poles
other than those introduced by the source function. The integral
can thus be evaluated numerically by applying the FFT algorithm.
The application, however, is not routine because we desire to obtain
the early time response (small ¢) as well as the long time response
(large ?).

C. Application of the FFT

Consider one element of the column matrix € in Eq. (27) and
express either the axial strain or bending strain at the local coordinate
x of a structural member as follows:

1 © ;
e®) = ——/ f(w)ép(w) e dw (29a)
27 J_
In this expression, the transform of the source time function f (w)

has been separated from the source vector s, and € p (w) denotes the
steady-state response under a single harmonic force. For numerical

work we shall impose a cut of frequency £ on the upper and
lower limit and reduce the infinite integral to a finite one. This cutoff
frequency is possible if the time function in Eq. (28a) is bandwidth
limited; therefore, we change f () to a step-time function with finite
duration ¢,, that is,

FO=H@) ~-H(E—1) (28b)

The Fourier transform of this function is f (@) =(1 — &%)/ (iw),
and the bandwidth is 27 /¢,. The cutoff frequency is thus selected as
2 =2m/t,. For the original loading with a step-time function, the
solution so obtained is valid only for ¢ < #,.

Dividing the bandwidth (—<2, €2) into 2N equal intervals of fre-
quency Aw so that N Aw =2, we reduce the'integral in Eq. (29a)
into a finite sum:

Lo ¢~ 4 2 inkAwat
emAn ==— Y FflkAw)épkAw)e (29b)
2

To apply the FFT algorithm for €(s), we introduce the discrete
Fourier inverse transform of f(w)ép(w) as

2N -1
ixnk

1 ~ i
elnl= kZ flkléplk1 e ¥ (30)

=0

where f[k]= f(kAw) and &p[k] =ép(kAw) for —N +1 <k <N
and both f[k] and €[k] are periodic series of 2N. If AtAw=m/N,
the e[n] in Eq. (30) is equal to e(nAt) times /(N Aw) in Eq. (29).

The assumption that f[k]ép[k] is periodic implies that g[n] is
also periodic of period 2N or equivalent (2N At = T) in the time -
domain. The question of how to represent & /(N Aw)e(nAt) accu-
rately by e[n] is equivalent to how small the Aw should be chosen
or how large the period T should be.’

The periodic function €[r] is related to the exact (nonperiodic)
answer €(¢) as follows:

T i1 kad
€ln] — —e(nAn) = = E e(nAt + jNAL) (€33
Q Q. .
j=—00,j#£0

Equation (31) shows that, if €(¢) is of significant size for ¢ > T, the
approximation €[n] can be highly inaccurate because the response
for ¢t > T will be aliased into the interval 0 < ¢ < T. Equation (30)
will therefore be a good approximation to Eq. (29) if we know that
€(¢t) (the answer we desired) is insignificant for ¢ > T (=27 /Aw).

D. Evaluation of the Inversion Transform by FFT

What we have discussed about the selections of & and T (or
N) is common to all problems of inverse Fourier transforms by
FFT." The major advantage of working with the integral in Eq. (27)
over that in Eq. (26) is in the physical contains of the respective
integrands. As discussed in the previous paper,® the integrand in
Eq. (27) contains the Neumann series expansion of (I —R)~!. The
first term I represents waves being generated by the source at a joint;
the second term R represents waves being reflected or transmitted
once by the neighboring joints; and so on. Each term R™ in the
series represents a set of waves arriving at the observational point,
the latest one arriving at time ¢ = t,,,. In the case of axial waves
with constant speed ¢[8], fmax is estimated from the longest path
along which the waves have been reverberated (scattered) m times
by one or many joints. We thus select T =1¢, + £ and calculate
the transient response only up to the time ¢ < ¢,.

When bending waves are involved as in the present case, there
is no obvious choice for 7y, because the wave is dispersive, and
the wave speed approaches 0 at very low frequencies. However, a
reasonable finite time interval #, can still be estimated on the basis
of the group velocity (less than ¢,) for flexural waves. Once the
t, is chosen, we set f, . =mt,, and the result from evaluating the
inverse Fourier transform of the sum involving { +R+ --- +R™)
should die out for ¢ > ¢/, + 1,. Returning to Eq. (31), if we chose
T =1}, + 1, and applied the FFT algorithm into Eq. (27), the alias-
ing error as defined in the right-hand side of the equation would be
reduced to a minimum because the data ¢ > T would have little or
no effect on the response.
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In contrast, numerically taking the inverse transform of Eq. (25)
can be quite complicated because it does not separate the response
into sets of wave arrivals but instead represents the entire transient
solution, which may be of quite a long duration.

V. Arrival Times of Synthesized Signals and Balance
of Momenta at a Joint

In this section we show a typical numerical dynamic response
of the truss shown in Fig. la for the purpose of checking the ar-
rival times for the Fourier-synthesized signals and the balance of
momenta. The sample truss shown in the Fig. 1a is taken from the
laboratory model for a dynamic experiment,'® and a detailed de-
scription of the model is given in the next section. The truss is
composed of 17 square aluminum bars that are welded together at
10 joints, and it is supported by a hinge at joint 1 and a roller at
joint 9. For numerical work all dimensions are normalized by the
unit of length Iy, and the width of each panel is taken as 3/,. Hence,
the length of each panel is 3 units, the height is 4 units, and the total
span is 12 units. The unit of normalized time is £, =1ly/c,, which
is the time taken by the axial wave to travel the distance /y. The
product EA is taken as one unit of force fy, and the external force
applied at joint 6 is assumed to be one unit step function in this
example.

A. Comparison with the Axial Waves Theories

In Ref. 8 we calculated the axial strains for each member of the
truss shown in Fig. 1a on the basis of the theory of axial waves.
The results for member 6-8 are shown in Fig, 2 for two cases: 1)
considering only axial waves in the truss with rigid joints and 2)
considering only axial waves in all structural members, revising the
scattering coefficients at all joints to include the effect of bending
waves. The result for case 1 is shown as short dashed lines and for
case 2 as long dashed lines. In Fig. 2 results based on the general
theory of this paper are shown as case 3 as a solid line.

The transient responses have been calculated with a FFT computer
code for 90 1y, using 30 terms in the series. The dynamic strain is

seen to approach the static value of —0376 um/m gradually. In case -

3 we applied the complete scattering matrix in Eqs. (13) to detérmine
all three components of /X and d’X but omitted the second and
third components of a’¥ and d/X . Case 1 in Ref. 8 considered only
a{¥ and d{¥ in the evaluation of the scattering matrix.

Case 1 has been checked against another case calculated by a
ray-tracing method in Ref. 9. As times increases, because the rays
become too numerous, the ray-tracing method becomes impracti-
cal. Furthermore, ray tracing cannot be applied directly to the case
involving bending waves because of the dispersion.

InFig. 2 the first arrival of waves is seen clearly for all three cases,
and this is expected because the axial waves are the fastest in all of

the structural members, The arrival time of the synthesized signal
by FFT agrees with that determined by the ray theory, the latter
being the travel time of the axial wave from the note at joint 6 to the
midpoint of member 6-8. Case 3 has shown additional dispersion
because the theory allows for bending waves to be converted back
into axial waves at all joints. Nevertheless, it is still possible to
discern individual wave arrivals for cases 2 and 3 at earlier times
before the initial waves have become too dispersed by multiple
scatterings and because the axial wave response dominates at early
times.

Comparisons of the axial strains in all three cases are also made
for other members. The features are similar to those shown for the
member 6-8. The axial wave theory (case 1) predicts the very early
response well, but it diverges from the general theory of axial and
flexural waves (case 3) very quickly as time increases. The results
based on the revised axial wave theory (case 2) agree with those
of case 3 over a much longer time, but the theory cannot predict
strains generated by flexural waves, which are discussed in the next
section.

B. Balance of Momenta at a Joint

In the general theory the linear momentum and angular momen-
tum of a joint are balanced at all time, as stated in Eqgs. (11). Al-
though the matrices a(w) and d(w) for the steady-state response of
the structure are calculated from Egs. (11) together with Egs. (12)
and (20) for each value of w, we must check whether the momenta
of the transient response, which are determined from the inverse
transform involving a(w) and d(w), are balanced at all times. Be-
cause we have neglected the masses of the joints [M” in Egs. (11)],
balances of momenta are equivalent to the balance of forces and
moments.

In Fig. 3 we plotted the axial forces in solid lines and shear forces
in dashed lines in members 5-3, 5-4, 5-6, and 5-7, which are con-
nected at joint 5, whereas a unit step compressive force fy=EA
is applied at joint 6. The forces shown in Fig. 3 are normalized
by fo, and the time is again normalized by #. The dynamic axial
forces F/X in four members differ from each other significantly, and
the shear forces, although very small, also differ from each other,
However, the sums for the X components and for the ¥ compo-
nents of both axial and shear forces are nearly zero (to the order
of 107*) and are depicted by a thick straight line along the time
axis,

In Fig. 4 the moments in members 5-3, 5-4, 5-6, and 5-7 at joint
5 are plotted. All moments are normalized to foly. The moments
change rapidly from time to time, but their sum is nearly zero (to
the order of 10~2) for all time. The completeness of our theory and
accuracy of the numerical evaluation are thus substantiated by this
result.

100 0.0 100 200 300 40.0 50.0 60.0 700 80.0 90.0
Normalized Time
Fig.2 Dynamic axial strain in member 6-8 based on three different theories: - - - -, case 1; ———, case 2; and —, case 3.
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Fig.3 Balances of forces at joint 5: ——, axial forces; - - - -, shear forces; and =, the sum of X components and ¥ components of all forces.
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Fig. 4 Balances of moments at joint 5 (the sum of four moments being nearly zero).

VI. Axial and Bending Strains and Comparison
with Experiments

Once the accuracy of the sample calculations was obtained, we
calculated from Eq. (27) the axial and bending strains at the mid-
points of all structural members and compared them with experi-
mentally measured strains.!® The axial strain is given by the first
element of €’¥ for each member, and the bending strain equals the
sum of the second and third elements. We shall hear only the the-
oretical and experimental results for three members, 5-7, 6-7, and
6-8, and the action of only one vertical force at joint 6.

A. Experiments

Experimental data were taken from a laboratory model developed
for dynamic experiments described in Refs. 8 and 10. We deliber-
ately chose asymmetrical configuration for the truss as shown in
Fig. 1 to enhance the varieties of experimental data collections.
The planar truss is composed of 17 square alumina rods that are
welded to form four panels with 10 joints. The dimension for each
panel is 12 x 16 in. or 0.305 x 0.406 m, and the span of the truss
is 1.22 m. The cross-sectional area of the alumina rod is % X %
in. or 4.03 x 1073 m?, and the material constants are E = 69 GPa
and G =27 GPa, respectively. Because we have assumed in the
preceding section 3 units of length and so on for the width of

the panel, the basic length unit is [, =0.102 m, #, =20.2 us, and
fo=EA=2.782x 10°N.

The model frame was actually suspended upside down at joints
1 and 9 to a heavy I beam with simulated hinge or roller support
conditions, and the truss was preloaded by a heavy weight 113 N
suspended by a fishing wire to joint 6. As mentioned in Ref. §, the
measured static strain for the rigid joint truss agreed closely with
the theoretical values for a pin-connected truss. For instance, for
the lower chord 4-6, vertical member 5-6, and upper chord 5-7, the
measured strains ¢ in micrometers per meter (10~°) and the the-
oretical values (given inside the parentheses) are, respectively,
£46 =32.0(30.6), £56 =22.5(20.4), and &5; = —30.0(—30.6) when
the weight of 113 N is suspended at joint 6. The corresponding
experimental and theoretical values of axial strains (10~%) because
of bending are g4¢;, =7.0(1.1), &5 = 1.5(0.3), and &57, = 0.0(1.1).
The difference between the experimental and theoretical value for
bending strain is much larger than that for the axial strain.

The dynamic loading is generated suddenly by burning the wire
and releasing the weight. The condition of sudden unloading is sim-
ulated mathematically by the complementary Heaviside function
1 — H(2) for the theoretical model. The original data were then con-
verted to those for the step loading [a unit Heaviside time function
H(#)] by subtracting the experimental data for the step unloading
from a constant value of the initial strain and static loading.
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Fig.5 Comparison of the theoretical values and experimental data for the axial strain in member 6-8;: —, theory, and - - - -, experiment.
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Fig.6 Comparison of the theoretical value and experimental data for the axial strain in member 5-7: —, theory, and - .- -, experiment.

As shown in Fig. 1a, a unit compressive force f§=113 N in
Eq.(11b) is suddenly applied to joint 6. The experimental static
values of axial strains for respect members are shown in Figs. 5-7,
and those of bending strain are shown in Figs. 8-10. In Figs. 5-7
the axial and bending strain are normalized to gy= f¢/EA=
40.6 um/m, where f° equals the weight at joint 6,113 N,and EA =
2.782 x 108 N.

B. - Axial Strains

Figures 5-7 show the axial strains in three members. The solid
line is the result of the reverberation method from Eq. (27) (us-
ing 30 terms in the series expansion), and the dashed line is the
experimental data. For the member 6-8 shown in Fig. 5, the the-
oretical and experimental results agree closely up until 30 #; the
two results are close. After that the difference between theory and
experiment increases. We believe that the discrepancy is caused by
the oversimplifications of the mathematical model for the actual
supports (a hinged and a roller), which is suggested by the obser-
vation that the discrepancy becomes large after about 30 # and
which is about equal to the time for all waves scattered twice at the
supports.

Figures 6 and 7 show that the results compare for axial strains
in members 5-7 and 6-7, respectively. As in Fig. 5, the theoretical

results are very close until 30 # have elapsed. Presumably, this is
again caused by the supports.

In Figs. 5-7 we have indicated static values for the strains in
each member. Both theoretical and experimental results gradually
approach to the static value. There is considerable dynamic overshot
in theoretical curves; the peak values bending 80% larger than static
asymptotes in these members.

C. Bending Strains

In Figs. 8-10 we show the bending strains in three members of the
truss. Again, the results based on Eq. (27) are shown by solid lines
and the experimental data by dashed lines. Because the bending
wave is slower than the axial wave, the bending signal starts later
than the axial wave in all cases. Also, because of the dispersive nature
of the wave, with higher frequencies faster than slower frequencies,
the arrival starts with many small wavelets before the arrival of the
main part of the signal. ‘

Figure 8 is for member 6-8. The experiment and theory diverge
again at around 30 f,. Figures 9 and 10 show the bending strain in
members 5-7 and 6-7, respectively. Figures 9 and 10 exhibit features
similar to those of Fig. 8, and the divergences starts around 30 .

From these figures we find from the magnitude of the maximum
bending strain that the chord members 5-7 and 6-8 are twice as large
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Fig. 10 Comparison of the theoretical value and experimental data for the bending strain in member 6-7: ——, theory, and - - -

as the diagonal member 6-7. The magnitudes of bending strains
in all members, however, are of the same order as those of axial
strains shown in the preceding three figures. The static values for
bending strains are not shown in Figs. 8-10 because they are sup-
posed to be zero for a truss with pined joints. Even for the truss with
rigid joints, the static values are still very small for the model used
in the experiment.!* We do not have an explanation for the very
large bending strains in the truss and dynamic loading as shown in
Fig. 10.

VII. Conclusion

We have presented a new matrix formulation for analyzing the dy-
namic response and propagation of elastic waves in a structure that
is composed of beams and rods and connected by a rigid or pinned
joint. The formulation, which is named as the method of reverbera-
tion matrix, is similar to that proposed by Negam and Williams’ for
steady-state waves. Their method showed higher accuracy than the
existing dynamic stiffness method or finite element method in the
evaluation of the natural frequencies of framed structures.

The major advantage of the method of the reverberation matrix
lies in the determining of transient responses of structures. Com-
bined with a refined FFT algorithm, the method yields accurate
arrival time and initial responses for all three modes of waves (axial
wave and two modes of flexural waves), as well as correct asymptotic
values (static values) for long time responses. The completeness and
accuracy of this formulation is further demonstrated by the balance
of linear and angular momenta at the joint, as shown in Figs. 3
and 4 for all time. The key step in the analysis is the conversion of
(I — R)~! to a power series of I as shown in Eq. (27).

Comparing with a set of carefully conducted experimental data for
amodel truss, we found that the theoretical results agree closely with
the experimental data at early times. However, they differ around
t =304, which is estimated as the time required for the waves
traveling through the support twice, or traveling around the entire
truss once, and so this indicates that the mathematical condition for
the hinged and roller support of the truss should be reexamined.
The rather large dynamic overshot over the static values shown in
Figs. 5-7 after ¢ > 30 ¢, should be examined concurrently.

Hopefully, the method of the reverberation matrix can be ap-
plied to determine rationally the impact factor, which is the ra-
tio of the maximum dynamic response to the static response, for
truss-type structures. Aside from precise dynamic stress analysis,
the detailed and accurate evaluation of dynamic response history
will be useful for system identification and for active control of the
structures.

400 500 60.0 700 80.0 90.0
Normalized Time

«, experiment.
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